Computation of Standard Errors for Maximum-likelihood Estimates in Hidden Markov Models

نویسندگان

  • Tero Aittokallio
  • Esa Uusipaikka
چکیده

Explicit computation of the score vector and the observed information matrix in hidden Markov models is described. With the help of the information matrix Wald's con dence intervals can be formed for the model parameters. Finite sample properties of the maximum-likelihood estimator and its standard error are investigated by means of simulation studies. We compare the con dence levels of intervals based on two model estimation methods. The problems in model estimation due to multimodal nature of the likelihood surface are demonstrated and discussed as well. Moreover, using the same approach one can investigate the uncertainty of the classi cation procedure based on the likelihood values in the recognition problems.

منابع مشابه

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

Feature dimension reduction using reduced-rank maximum likelihood estimation for hidden Markov models

This paper presents a new method of feature dimension reduction in hidden Markov modeling (HMM) for speech recognition. The key idea is to apply reduced rank maximum likelihood estimation in the M-step of the usual Baum-Welch algorithm for estimating HMM parameters such that the estimates of the Gaussian distribution parameters are restricted in a sub-space of reduced dimensionality. There are ...

متن کامل

Computation of Restricted Maximum-penalized-likelihood Estimates in Hidden Markov Models

The maximum-penalized-likelihood estimation for hidden Markov models with general observation densities is described. All statistical inference, including the model estimation, testing, and selection, is based on the restricted optimization of the penalized likelihood function with respect to the chosen model family. The method is used in an economic application, where stock market index return...

متن کامل

Information matrix for hidden Markov models with covariates

For a general class of hidden Markov models that may include time-varying covariates, we illustrate how to compute the observed information matrix, which may be used to obtain standard errors for the parameter estimates and check model identifiability. The proposed method is based on the Oakes’ identity and, as such, it allows for the exact computation of the information matrix on the basis of ...

متن کامل

Parameter Estimation for Hidden Markov Models with Intractable Likelihoods

Approximate Bayesian computation (ABC) is a popular technique for approximating likelihoods and is often used in parameter estimation when the likelihood functions are analytically intractable. Although the use of ABC is widespread in many fields, there has been little investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000